
1. SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE WRITTEN IN JAVA.

• Assume that the classes listed in the Java Quick Reference have been imported where appropriate.

• Unless otherwise noted in the question, assume that parameters in method calls are not null and that

methods are called only when their preconditions are satisfied.

• In writing solutions for each question, you may use any of the accessible methods that are listed in

classes defined in that question. Writing significant amounts of code that can be replaced by a call to one

of these methods will not receive full credit.

Many encoded strings contain delimiters. A delimiter is a non-empty string that acts as a boundary between different

parts of a larger string. The delimiters involved in this question occur in pairs that must be balanced, with each pair

having an open delimiter and a close delimiter. There will be only one type of delimiter for each string. The following

are examples of delimiters.

Example 1

Expressions in mathematics use open parentheses "(" and close parentheses ")" as delimiters. For each open

parenthesis, there must be a matching close parenthesis.

(x + y)

* 5
is a valid mathematical expression.

(x + (y)
is NOT a valid mathematical expression because there are more open delimiters

than close delimiters.

Example 2

HTML uses and as delimiters. For each open delimiter , there must be a matching close delimiter

.

 Make this text

bold
is valid HTML.

 Make this text

bold </UB>

is NOT valid HTML because there is one open delimiter and no

matching close delimiter.

In this question, you will write two methods in the following Delimiters class.

public class Delimiters

{

/** The open and close delimiters. */

AP COMPUTER SCIENCE A Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

AP Computer Science A Page 1 of 16

private String openDel;

private String closeDel;

/** Constructs a Delimiters object where open is the open delimiter
and close is the

* close delimiter.

* Precondition: open and close are non-empty strings.

*/

public Delimiters(String open, String close)

{

openDel = open;

closeDel = close;

}

/** Returns an ArrayList of delimiters from the array tokens, as
described in part (a). */

public ArrayList<String> getDelimitersList(String[] tokens)

{ /* to be implemented in part (a) */ }

/** Returns true if the delimiters are balanced and false otherwise,
as described in part (b).

* Precondition: delimiters contains only valid open and close
delimiters.

*/

public boolean isBalanced(ArrayList<String> delimiters)

{ /* to be implemented in part (b) */ }

// There may be instance variables, constructors, and methods that
are not shown.

}

(a)

A string containing text and possibly delimiters has been split into tokens and stored in String[] tokens. Each

token is either an open delimiter, a close delimiter, or a substring that is not a delimiter. You will write the method

getDelimitersList, which returns an ArrayList containing all the open and close delimiters found in

tokens in their original order.

The following examples show the contents of an ArrayList returned by getDelimitersList for different

open and close delimiters and different tokens arrays.

Example 1

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

Page 2 of 16 AP Computer Science A

Example 2

Class information for this question

public class Delimiters

private String openDel

private String closeDel

public Delimiters(String open, String close)

public ArrayList<String> getDelimitersList(String[] tokens)

public boolean isBalanced(ArrayList<String> delimiters)

Complete method getDelimitersList below.

/** Returns an ArrayList of delimiters from the array tokens, as

described in part (a). */

public ArrayList<String> getDelimitersList(String[] tokens)

(b)

Write the method isBalanced, which returns true when the delimiters are balanced and returns false

otherwise. The delimiters are balanced when both of the following conditions are satisfied; otherwise, they are not

balanced.

1. When traversing the ArrayList from the first element to the last element, there is no point at which

there are more close delimiters than open delimiters at or before that point.

2. The total number of open delimiters is equal to the total number of close delimiters.

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

AP Computer Science A Page 3 of 16

Consider a Delimiters object for which openDel is "^{" and closeDel is "}". The examples

below show different ArrayList objects that could be returned by calls to getDelimitersList and the value

that would be returned by a call to isBalanced.

Example 1

The following example shows an ArrayList for which isBalanced returns true. As tokens are examined

from first to last, the number of open delimiters is always greater than or equal to the number of close delimiters. After

examining all tokens, there are an equal number of open and close delimiters.

Example 2

The following example shows an ArrayList for which isBalanced returns false.

Example 3

The following example shows an ArrayList for which isBalanced returns false.

Example 4

The following example shows an ArrayList for which isBalanced returns false because the second

condition is violated. After examining all tokens, there are not an equal number of open and close delimiters.

Class information for this question

public class Delimiters

private String openDel

private String closeDel

public Delimiters(String open, String close)

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

Page 4 of 16 AP Computer Science A

public ArrayList<String> getDelimitersList(String[] tokens)

public boolean isBalanced(ArrayList<String> delimiters)

Complete method isBalanced below.

/** Returns true if the delimiters are balanced and false otherwise, as

described in part (b).

* Precondition:Precondition: delimiters contains only valid open and close

delimiters.

*/

public boolean isBalanced(ArrayList<String> delimiters)

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

AP Computer Science A Page 5 of 16

2. Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE

WRITTEN IN JAVA.

Notes:

• Assume that the classes listed in the Java Quick Reference have been imported where appropriate.

• Unless otherwise noted in the question, assume that parameters in method calls are not null and that

methods are called only when their preconditions are satisfied.

• In writing solutions for each question, you may use any of the accessible methods that are listed in

classes defined in that question. Writing significant amounts of code that can be replaced by a call to one

of these methods will not receive full credit.

An array of positive integer values has the mountain property if the elements are ordered such that successive

values increase until a maximum value (the peak of the mountain) is reached and then the successive values

decrease. The Mountain class declaration shown below contains methods that can be used to determine if an array

has the mountain property. You will implement two methods in the Mountain class.

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

Page 6 of 16 AP Computer Science A

(a) Write the Mountain method getPeakIndex. Method getPeakIndex returns the index of the first peak found in

the parameter array, if one exists. A peak is defined as an element whose value is greater than the value of the

element immediately before it and is also greater than the value of the element immediately after it. Method

getPeakIndex starts at the beginning of the array and returns the index of the first peak that is found or -1 if no

peak is found.

For example, the following table illustrates the results of several calls to getPeakIndex.

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

AP Computer Science A Page 7 of 16

Complete method getPeakIndex below.

(b) Write the Mountain method isMountain. Method isMountain returns true if the values in the parameter array

are ordered as a mountain; otherwise, it returns false. The values in array

are ordered as a mountain if all three of the following conditions hold.

• There must be a peak.

• The array elements with an index smaller than the peak’s index must appear in increasing order.

• The array elements with an index larger than the peak’s index must appear in decreasing order.

For example, the following table illustrates the results of several calls to isMountain.

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

Page 8 of 16 AP Computer Science A

In writing isMountain, assume that getPeakIndex works as specified, regardless of what you wrote in part (a).

Complete method isMountain below.

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

AP Computer Science A Page 9 of 16

3. Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE WRITTEN IN

JAVA.

Notes:

• Assume that the classes listed in the appendices have been imported where appropriate.

• Unless otherwise noted in the question, assume that parameters in method calls are not null and that methods are

called only when their preconditions are satisfied.

• In writing solutions for each question, you may use any of the accessible methods that are listed in classes

defined in that question. Writing significant amounts of code that can be replaced by a call to one of these

methods may not receive full credit.

Consider a software system that models a horse barn. Classes that represent horses implement the following interface.

A horse barn consists of N numbered spaces. Each space can hold at most one horse. The spaces are indexed starting from

0; the index of the last space is N – 1. No two horses in the barn have the same name.

The declaration of the HorseBarn class is shown below. You will write two unrelated methods of the HorseBarn class.

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

Page 10 of 16 AP Computer Science A

a. Write the HorseBarn method findHorseSpace. This method returns the index of the space in which the horse with

the specified name is located. If there is no horse with the specified name in the barn, the method returns -1.

For example, assume a HorseBarn object called sweetHome has horses in the following spaces.

The following table shows the results of several calls to the findHorseSpace method.

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

AP Computer Science A Page 11 of 16

Complete method findHorseSpace below.

b. Write the HorseBarn method consolidate. This method consolidates the barn by moving horses so that the horses

are in adjacent spaces, starting at index 0, with no empty spaces between any two horses. After the barn is

consolidated, the horses are in the same order as they were before the consolidation.

For example, assume a barn has horses in the following spaces.

The following table shows the arrangement of the horses after consolidate is called.

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

Page 12 of 16 AP Computer Science A

Complete method consolidate below.

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

AP Computer Science A Page 13 of 16

SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE WRITTEN IN JAVA.

Assume that the classes listed in the Java Quick Reference have been imported where appropriate.

Unless otherwise noted in the question, assume that parameters in method calls are not null and that methods are called

only when their preconditions are satisfied.

In writing solutions for each question, you may use any of the accessible methods that are listed in classes defined in that

question. Writing significant amounts of code that can be replaced by a call to one of these methods will not receive full

credit.

The Gizmo class represents gadgets that people purchase. Some Gizmo objects are electronic and others are not. A partial

definition of the Gizmo class is shown below.

public class Gizmo

{

/** Returns the name of the manufacturer of this Gizmo. */

public String getMaker()

{

/* implementation not shown */

}

/** Returns true if this Gizmo is electronic, and false otherwise. */

public boolean isElectronic()

{

/* implementation not shown */

}

/** Returns true if this Gizmo is equivalent to the Gizmo object
represented by the

* parameter, and false otherwise.

*/

public boolean equals(Object other)

{

/* implementation not shown */

}

// There may be instance variables, constructors, and methods not shown.

}

The OnlinePurchaseManager class manages a sequence of Gizmo objects that an individual has purchased from an

online vendor. You will write two methods of the OnlinePurchaseManager class. A partial definition of the

OnlinePurchaseManager class is shown below.

public class OnlinePurchaseManager

{

/** An ArrayList of purchased Gizmo objects, instantiated in the
constructor. */

private ArrayList<Gizmo> purchases;

/** Returns the number of purchased Gizmo objects that are electronic and

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

Page 14 of 16 AP Computer Science A

are

* manufactured by maker, as described in part (a).

*/

public int countElectronicsByMaker(String maker)

{

/* to be implemented in part (a) */

}

/** Returns true if any pair of adjacent purchased Gizmo objects are
equivalent, and

* false otherwise, as described in part (b).

*/

public boolean hasAdjacentEqualPair()

{

/* to be implemented in part (b) */

}

// There may be instance variables, constructors, and methods not shown.

}

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

AP Computer Science A Page 15 of 16

4. (a) Write the countElectronicsByMaker method. The method examines the ArrayList instance variable

purchases to determine how many Gizmo objects purchased are electronic and are manufactured by maker.

Assume that the OnlinePurchaseManager object opm has been declared and initialized so that the

ArrayList purchases contains Gizmo objects as represented in the following table.

Index in purchasespurchases 0 1 2 3 4 5

Value returned by method call isElectronic() true false true false true false

Value returned by method call getMaker() "ABC" "ABC" "XYZ" "lmnop" "ABC" "ABC"

The following table shows the value returned by some calls to countElectronicsByMaker.

Method Call Return Value

opm.countElectronicsByMaker("ABC") 2

opm.countElectronicsByMaker("lmnop") 0

opm.countElectronicsByMaker("XYZ") 1

opm.countElectronicsByMaker("QRP") 0

Complete method countElectronicsByMaker below.

/** Returns the number of purchased Gizmo objects that are electronic and

* whose manufacturer is maker, as described in part (a).

*/

public int countElectronicsByMaker(String maker)

(b) When purchasing items online, users occasionally purchase two identical items in rapid succession without

intending to do so (e.g., by clicking a purchase button twice). A vendor may want to check a user's purchase history to

detect such occurrences and request confirmation.

Write the hasAdjacentEqualPair method. The method detects whether two adjacent Gizmo objects in

purchases are equivalent, using the equals method of the Gizmo class. If an adjacent equivalent pair is

found, the hasAdjacentEqualPair method returns true. If no such pair is found, or if purchases has

fewer than two elements, the method returns false.

Complete method hasAdjacentEqualPair below.

/** Returns true if any pair of adjacent purchased Gizmo objects are

equivalent, and

* false otherwise, as described in part (b).

*/

public boolean hasAdjacentEqualPair()

Test Booklet

FRQ (Unit 3) Boolean Expressions and if Statements

Page 16 of 16 AP Computer Science A

